Search results for "Finite geometry"

showing 6 items of 6 documents

Magic informationally complete POVMs with permutations

2017

Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation [M. Planat and Rukhsan-Ul-Haq, Preprint 1701.06443]. We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such IC-POVMs, investigated in dimensions $2$ to $12$, exhibit simple finite geometries in their projector products and, for dimensions $4$ and $8$ and $9$, relate to two-qubit, three-qubit and two-qutrit contextuality.

1003permutation groups159informationally complete povmsFOS: Physical sciences01 natural sciences157[SPI.MAT]Engineering Sciences [physics]/Materialslaw.inventionCombinatorics81P50 81P68 81P13 81P45 20B05Permutationlaw0103 physical sciences1009[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicslcsh:ScienceEigenvalues and eigenvectorsQuantum computer[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]PhysicsQuantum Physics120Multidisciplinary010308 nuclear & particles physicsPhysicsMagic (programming)Q Science (General)16. Peace & justiceKochen–Specker theoremProjectorfinite geometryPauli groupquantum contextualitylcsh:QPreprintmagic statesQuantum Physics (quant-ph)Research Article
researchProduct

Embedding linear spaces with two line degrees in finite projective planes

1986

In this paper we shall classify all finite linear spaces with line degrees n and n-k having at most n2+n+1 lines. As a consequence of this classification it follows: If n is large compared with k, then any such linear space can be embedded in a projective plane of order n−1 or n.

Discrete mathematicsPure mathematicsReal projective lineReal projective planeDuality (projective geometry)Finite geometryProjective spaceLine at infinityGeometry and TopologyFano planeProjective planeMathematicsJournal of Geometry
researchProduct

A class of unitals of order q which can be embedded in two different planes of order q2

1987

By deriving the desarguesian plane of order q2 for every prime power q a unital of order q is constructed which can be embedded in both the Hall plane and the dual of the Hall plane of order q2 which are non-isomorphic projective planes. The representation of translation planes in the fourdimensional projective space of J. Andre and F. Buekenhouts construction of unitals in these planes are used. It is shown that the full automorphism groups of these unitals are just the collineation groups inherited from the classical unitals.

AlgebraPure mathematicsCollineationReal projective planeDuality (projective geometry)Translation planeFinite geometryGeometry and TopologyProjective planeFano planeNon-Desarguesian planeMathematicsJournal of Geometry
researchProduct

A Common Characterization of Finite Projective Spaces and Affine Planes

1981

Let S be a finite linear space for which there is a non-negative integer s such that for any two disjoint lines L, L' of S and any point p outside L and L' there are exactly s lines through p intersecting the two lines L and L'. We prove that one of the following possibilities occurs: (i) S is a generalized projective space, and if the dimension of S is at least 4, then any line of S has exactly two points. (ii) S is an affine plane, an affine plane with one improper point, or a punctured projective plane. (iii) S is the Fano-quasi -plane.

Plane curveFano planeTheoretical Computer ScienceCombinatoricsReal projective lineComputational Theory and MathematicsBlocking setReal projective planeFinite geometryDiscrete Mathematics and CombinatoricsProjective spaceGeometry and TopologyProjective planeMathematicsEuropean Journal of Combinatorics
researchProduct

On the projective geometry of entanglement and contextuality

2019

[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Invariant theory[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Information quantiqueAlgebraic geometry[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Théorie des invariants[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Géométrie discrète et combinatoireGéométrie algébriqueQuantum Information[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Finite geometry[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Embedding finite linear spaces in projective planes, II

1987

Abstract It is shown that a finite linear space with maximal point degree n + 1 can be embedded in a projective plane of order n, provided that the line sizes are big enough.

Discrete mathematicsLine at infinityFano planeTheoretical Computer ScienceCombinatoricsReal projective lineReal projective planeDuality (projective geometry)Finite geometryProjective spaceDiscrete Mathematics and CombinatoricsProjective planeComputer Science::DatabasesMathematicsDiscrete Mathematics
researchProduct